问题
解答题
已知f(x)=
(1)试判断并证明f(x)的单调性; (2)当λ取何值时,方程f(x)+f(-x)=λ有实数解? |
答案
(1)设x1,x2∈(0,1),x1>x2 ,-------------(1分)
故有 f(
)-f(x 1
)=x 2
-2x1 4x2+1
=2x2 4x2+1
=2x1(4x2+1)-2x2(4x1+1) (4x2+1)(4x2+1)
.-------(3分)(2x1+x2-1)(2x2-2x1) (4x2+1)(4x2+1)
∵2x1+x2>1,2x2<2x1∴f(x1)<f(x2),
∴f(x)为减函数.---------(5分)
(2)∵f(x)在x∈(0,1)上单调递减,∴f(1)<f(x)<f(0),即
<f(x)<2 5
.1 2
∵f(-x)=
=2-x 4-x+1
=f(x),2x 4x+1
∴λ=f(x)+f(-x)=2f(x),即当x∈(0,1)时,
<λ<1.-------------(8分)4 5