问题
填空题
已知函数y=f(x)是定义在R上恒不为0的单调函数,对任意的x,y∈R,总有f(x)f(y)=f(x+y)成立,若数列{an}的n项和为Sn,且满足a1=f(0),f(an+1)=
|
答案
因为任意的x,y∈R,总有f(x)f(y)=f(x+y)成立,
所以f(0)f(0)=f(0),即f(0)•(f(0)-1)=0,
解得f(0)=1,即a1=1,
又f(an+1)•f(3n+1-2an)=1,即f(an+1+3n+1-2an)=f(0),
所以an+1+3n+1-2an=0,
则an+1+3n+1+2×3n+1=2an+2×3n+1,,即
=2,an+1+3n+2 an+3n+1
所以数列{an+3n+1}是首项为10,公比为2的等比数列,
则an+3n+1=10×2n-1,即an=5×2n-3n+1,
所以Sn=5×
-2(1-2n) 1-2
=5×2n+1-32(1-3n) 1-3
.3n+2+11 2
故答案为5×2n+1-
.3n+2+11 2