问题 解答题
设x轴、y轴正方向上的单位向量分别是
i
j
,坐标平面上点An、Bn(n∈N*)分别满足下列两个条件:
OA1
=
j
AnA
n+1
=
i
+
j
;②
OB1
=3
i
BnBn+1
=(
2
3
)×3
i

(1)求
OAn
OBn
的坐标;
(2)若四边形AnBnBn+1An+1的面积是an,求an(n∈N*)的表达式;
(3)对于(2)中的an,是否存在最小的自然数M,对一切(n∈N*)都有an<M成立?若存在,求M;若不存在,说明理由.
答案

(1)

OAn
=
OA1
+
A1A2
+…+
An-1An
=
j
+(n-1)(
i
+
j
)=(n-1)
i
+n
j
=(n-1,n)
OBn
=
OB1
+
B1B2
+…+
Bn-1Bn
=3
i
+(
2
3
)1×3
i
+(
2
3
)2×3
i
+…+(
2
3
)n-1×3
i
=
1-(
2
3
)
n
1-
2
3
×3
i
=(9-9×(
2
3
)
n
,0)

(2)设AnAn+1的所在的直线交x轴于点p,则有

an=S△PAn+1Bn+1-S△PAnBn=

1
2
[10-9×(
2
3
)n+1]×(n+1)-
1
2
[10-9×(
2
3
)n]×n

=5+(n-2)×(

2
3
)n-1

(3)an-an+1=[5+3(n-2)×(

2
3
)n-1]-[5+3(n-1)×(
2
3
)n]=3×(
2
3
)n-1[(n-2)-(n-1)×(
2
3
)]=(n-4)×(
2
3
)n-1

∴a1-a2<0,a2-a3<0,a3-a4<0.a4-a5=0,a5-a6>0,a6-a7>0,等等.

即在数列{an}中,a4=a5=5+

8
9
是数列的最大项,所以存在最小的自然数M=6,对一切n∈N*,都有an<M成立.

单项选择题
单项选择题