在二项式定理这节教材中有这样一个性质:Cn0+Cn1+Cn2+Cn3+…Cnn=2n,n∈N
(1)计算1•C30+2•C31+3•C32+4•C33的值方法如下:
设S=1•C30+2•C31+3•C32+4•C33又S=4•C33+3•C32+2•C31+1•C30
相加得2S=5•C30+5•C31+5•C32+5•C33即2S=5•23
所以2S=5•22=20利用类似方法求值:1•C20+2•C21+3•C22,1•C40+2•C41+3•C42+4•C43+5•C44
(2)将(1)的情况推广到一般的结论,并给予证明
(3)设Sn是首项为a1,公比为q的等比数列{an}的前n项的和,求S1Cn0+S2Cn1+S3Cn2+S4Cn3+…+Sn+1Cnn,n∈N.
(1)设S=1•C20+2•C21+3•C22又S=3•C22+2•C21+1•C20
相加2S=4(C20+C21+C22)=16,S=8
设S=1•C40+2•C41+3•C42+4•C43+5•C44
又S=5•C44+4•C43+3•C42+2•C41+1•C40
相加2S=6(C30+C41+C42+C43+C44),∴S=3•24=48
(2)1•Cn0+2•Cn1+3•Cn2+…+(n+1)Cnn=(n+2)•2n-1
设S=1•Cn0+2•Cn1+3•Cn2+…+(n+1)Cnn
又S=(n+1)Cnn+nCnn-1+…+1•Cn0
相加2S=(n+2)(Cn0+Cn1+…+Cnn)∴S=•2n=(n+2)•2n-1
(3)当q=1时 Sn=na1S1Cn0+S2Cn1+…+Sn+1Cnn
=a1Cn0+2a1Cn1+…+(n+1)a1Cnn
=a1(1•Cn0+2•Cn1+…+(n+1)Cnn)
=a1•(n+2)•2n-1
当q≠1时 Sn==-qn
S1Cn0+S2Cn1+S3Cn2+…+Sn+1Cnn=(-q)+(-q2)+…+(-qn+1)
=(++…+)-(q+q2+…+qn+1)
=•2n-•q(•q0+•q1+…+qn)
=•2n-•q(1+q)n=-
综上,q=1时 S1Cn0+…+Sn+1Cnn=a1(n+2)•2n-1q≠1时S1+…+Sn+1=-