(1)原式=(-1+3)+(-5+7)+(-9+11)+…+(-1997+1999)
=2××
=1000;
(2)原式=(11-13)+(12-14)+(15-17)+…+(95-97)+(96-98)+(99+100)
=-2×+199
=-88+199=111;
(3)原式=(1990+1)-1990×2000
=1990×2000-1990+2000-1-1990×2000
=10-1
=9;
(4)原式=4726342+4726352-(472634-1)×(472634+1)-(472635-1)(472635+1)
=4726342+4726352-4726342+1-4726352+1
=2;
(5)原式=×(1-+-+…+-)
=×(1-)
=×
=;
(6)根据题意可知第n项就是an=1+3(n-1),
即有244=1+3(n-1),
∴n=82,
∴一共有82个数,
又∵1+244=245,4+241=245…,
∴原式=(1+244)×82=20090;
(7)设原式=m,
那么3m=3+m-,
∴2m=3-,
∴m=;
(8)原式=-+-+-
=(1+)-(+)+(+)-(+)+(+)-(+)
=1+--+…--
=1-
=.