问题 解答题
计算下列各式的值:
(1)-1+3-5+7-9+11-…-1997+1999;
(2)11+12-13-14+15+16-17-18+…+99+100;
(3)1991×1999-1990×2000;
(4)4726342+472 6352-472 633×472 635-472 634×472 636;
(5)
1
1×3
+
1
3×5
+
1
5×7
+…+
1
1997×1999

(6)1+4+7+…+244;
(7)1+
1
3
+
1
32
+
1
33
+…+
1
32000

(8)1
1
3
-
7
12
+
9
20
-
11
30
+
13
42
-
15
56
答案

(1)原式=(-1+3)+(-5+7)+(-9+11)+…+(-1997+1999)

=2×

2000
2
×
1
2

=1000;

(2)原式=(11-13)+(12-14)+(15-17)+…+(95-97)+(96-98)+(99+100)

=-2×

88
2
+199

=-88+199=111;

(3)原式=(1990+1)-1990×2000

=1990×2000-1990+2000-1-1990×2000

=10-1

=9;

(4)原式=4726342+4726352-(472634-1)×(472634+1)-(472635-1)(472635+1)

=4726342+4726352-4726342+1-4726352+1

=2;

(5)原式=

1
2
×(1-
1
3
+
1
3
-
1
5
+…+
1
1997
-
1
1999

=

1
2
×(1-
1
1999

=

1
2
×
1998
1999

=

999
1999

(6)根据题意可知第n项就是an=1+3(n-1),

即有244=1+3(n-1),

∴n=82,

∴一共有82个数,

又∵1+244=245,4+241=245…,

∴原式=(1+244)×82=20090;

(7)设原式=m,

那么3m=3+m-

1
32000

∴2m=3-

1
32000

∴m=

32001-1
32000

(8)原式=

1+3
1×3
-
3+4
3×4
+
4+5
4×5
-
5+6
5×6
+
6+7
6×7
-
7+8
7×8

=(1+

1
3
)-(
1
3
+
1
4
)+(
1
4
+
1
5
)-(
1
5
+
1
6
)+(
1
6
+
1
7
)-(
1
7
+
1
8

=1+

1
3
-
1
3
-
1
4
+…-
1
7
-
1
8

=1-

1
8

=

7
8

单项选择题 A3/A4型题
单项选择题 A1型题