问题 解答题

若数列{an}的前n项和为Sn,a1=1,Sn+an=2n(n∈N*)

(1)证明:数列{an-2}为等比数列;

(2)求数列{Sn}的前n项和Tn

答案

(1)∵Sn+an=2n,①

∴Sn-1+an-1=2(n-1),n≥2②

由①-②得,2an-an-1=2,n≥2,∴2(an-2)=an-1-2,n≥2,

∵a1-2=-1,

∴数列{an-2}以-1为首项,

1
2
为公比的等比数列.

(2)由(1)得an-2=-(

1
2
)n-1,∴an=2-(
1
2
)n-1

∵Sn+an=2n,∴Sn=2n-an=2n-2+(

1
2
)n-1

Tn=[0+(

1
2
)0]+[2+(
1
2
)]+…+[2n-2+(
1
2
)n-1]

=[0+2+…+(2n-2)]+[(

1
2
)0+(
1
2
)+…+(
1
2
)n-1]

=

n(2n-2)
2
+
1-(
1
2
)
n
1-
1
2
=n2-n+2-(
1
2
)n-1

单项选择题
单项选择题