问题
解答题
(7分)如图,在等腰三角形ABC中,∠ABC=90°,D为AC边上中点,过D
点作DE⊥DF,交AB于E,交BC于F,若AE=4,FC=3,求EF长.
答案
连结BD,证△BED≌△CFD和△AED≌△BFD,求得EF=5
分析:首先连接BD,由已知等腰直角三角形ABC,可推出BD⊥AC且BD=CD=AD,∠ABD=45°再由DE丄DF,可推出∠FDC=∠EDB,又等腰直角三角形ABC可得∠C=45°,所以△EDB≌△FDC,从而得出BE=FC=3,那么AB=7,则BC=7,BF=4,再根据勾股定理求出EF的长.
解:连接BD,
∵等腰直角三角形ABC中,D为AC边上中点,
∴BD⊥AC(三线合一),BD=CD=AD,∠ABD=45°,
∴∠C=45°,
∴∠ABD=∠C,
又∵DE丄DF,
∴∠FDC+∠BDF=∠EDB+∠BDF,
∴∠FDC=∠EDB,
在△EDB与△FDC中,
∵,
∴△EDB≌△FDC(ASA),
∴BE=FC=3,
∴AB=7,则BC=7,
∴BF=4,
在Rt△EBF中,
EF2=BE2+BF2=32+42,
∴EF=5.
答:EF的长为5.