问题
解答题
用数学归纳法证明对任何正整数n有
|
答案
证明:①当n=1时,左边=
,右边=1 3
=1 2+1
,1 3
∴等式成立;
②假设当n=k(k≥1,k∈N*)时等式成立,即
+1 3
+1 15
+1 35
+…+1 63
=1 4k2-1
,k 2k+1
则当n=k+1时,
+1 3
+1 15
+1 35
+…+1 63
+1 4k2-1 1 4(k+1)2-1
=
+k 2k+1 1 4(k+1)2-1
=
+k 2k+1 1 (2k+3)(2k+1)
=2k2+3k+1 (2k+3)(2k+1)
=(k+1)(2k+1) (2k+3)(2k+1)
=
.k+1 2(k+1)+1
∴当n=k+1时等式也成立.
由①②知等式对任何正整数n都成立.