问题
解答题
已知数列{an}的前n项和为Sn=n2+n. (I)求数列{an}的通项公式; (II)若bn=(
|
答案
(I)当n≥2时,an=Sn-Sn-1=n2+n-(n-1)2-(n-1)=2n,
当n=1时,a1=2也适合上式,
∴an=2n.
(II)由(I)知,bn=(
)an+n=(1 2
)n+n.1 4
∴Tn=
+(1 4
)2++(1 4
)n+(1+2+…+n)=1 4
+
[(1-(1 4
)n)]1 4 1- 1 4 n(n+1) 2
=
[1-(1 3
)n]+1 4
.n(n+1) 2