问题
解答题
已知等差数列{an}的前n项和为Sn,且满足:a3=6,a2+a5=14. (1)求an及Sn. (2)令bn=
|
答案
解(1)设等差数列{an}的首项为a1,公差为d.
则由已知
,得出a3=6 a2+a5=14
,解得a1+2d=6 2a1+5d=14
,所以an=2+(n-1)×2=2na1=2 d=2
Sn=n×2+
×2=n2+nn(n-1) 2
(2)bn=
=4 2(n+1)•2n
=1 (n+1)•n
-1 n 1 n+1
和Tn=(1-
)+(1 2
-1 2
)+…+(1 3
-1 n
)=1-1 n+1
=1 n+1 n n+1