问题
填空题
已知a为常数,a>0且a≠1,指数函数f(x)=ax和对数函数g(x)=logax的图象分别为C1与C2,点M在曲线C1上,线段OM(O为坐标原点)与曲线C1的另一个交点为N,若曲线C2上存在一点P,且点P的横坐标与点M的纵坐标相等,点P的纵坐标是点N的横坐标2倍,则点P的坐标为______.
答案
设点M的坐标为(m,am),点N的坐标为(n,an)
∵点P的横坐标与点M的纵坐标相等
∴点P的坐标为(am,m)
∵点P的纵坐标是点N的横坐标2倍,
∴m=2n
而O、M、N三点共线则
=am m
= an n a m 2 m 2
解得:am=4即m=loga4
∴点P的坐标为(4,loga4)
故答案为:(4,loga4)