问题
解答题
若不等式
(1)猜想正整数a的最大值, (2)并用数学归纳法证明你的猜想. |
答案
(1)当n=1时,
+1 1+1
+1 1+2
>1 3+1
,即a 24
>26 24
,a 24
所以a<26,
a是正整数,所以猜想a=25.
(2)下面利用数学归纳法证明
+1 n+1
+…+1 n+2
>1 3n+1
,25 24
①当n=1时,已证;
②假设n=k时,不等式成立,即
+1 k+1
+…+1 k+2
>1 3k+1
,25 24
则当n=k+1时,
有
+1 (k+1)+1
+…+1 (k+1)+2 1 3(k+1)+1
=
+1 k+1
+…+1 k+2
+1 3k+1
+1 3k+2
+1 3k+3
-1 3k+4 1 k+1
>
+[25 24
+1 3k+2
+1 3k+3
-1 3k+4
]2 3(k+1)
因为
+1 3k+2
=1 3k+4
>6(k+1) 9k2+18k+8 2 3(k+1)
所以
+1 3k+2
+1 3k+3
-1 3k+4
>0,2 3(k+1)
所以当n=k+1时不等式也成立.
由①②知,对一切正整数n,都有
+1 n+1
+…+1 n+2
>1 3n+1
,25 24
所以a的最大值等于25.…(14分)