问题 解答题
设关于正整数n的函数f(n)=1•22+2•32+…n(n+1)2
(1)求f(1),f(2),f(3);
(2)是否存在常数a,b,c使得f(n)=
n(n+1)
12
(an2+bn+c)
对一切自然数n都成立?并证明你的结论.
答案

(1)∵f(n)=1•22+2•32+…n(n+1)2

∴f(1)=1•22=4,

f(2)=1•22+2•32=22,

f(3)1•22+2•32+3•42=70;

(2)假设存在常数a,b,c使得f(n)=

n(n+1)
12
(an2+bn+c)对一切自然数n都成立,

则f(1)=

1×2
12
(a+b+c)=4,

∴a+b+c=24①,

同理,由f(2)=22得4a+2b+c=44②,

由f(3)=70得9a+3b+c=70③

联立①②③,解得a=3,b=11,c=10.

∴f(n)=

n(n+1)
12
(3n2+11n+10).

证明:1°当n=1时,显然成立;

2°假设n=k时,f(k)=

k(k+1)
12
(3k2+11k+10)=
k(k+1)(k+2)(3k+5)
12

则n=k+1时,f(k+1)=f(k)+(k+1)[(k+1)+1]2

=

k(k+1)(k+2)(3k+5)
12
+(k+1)[(k+1)+1]2

=

(k+1)(k+2)
12
(3k2+17k+24)

=

(k+1)(k+2)(k+3)(3k+8)
12

=

(k+1)[(k+1)+1][(k+2)+1][3(k+1)+5]
12

即n=k+1时,结论也成立.

综合1°,2°知,存在常数a=3,b=11,c=10使得f(n)=

n(n+1)
12
(3n2+11n+10)对一切自然数n都成立.

单项选择题
判断题