问题
解答题
设关于正整数n的函数f(n)=1•22+2•32+…n(n+1)2 (1)求f(1),f(2),f(3); (2)是否存在常数a,b,c使得f(n)=
|
答案
(1)∵f(n)=1•22+2•32+…n(n+1)2,
∴f(1)=1•22=4,
f(2)=1•22+2•32=22,
f(3)1•22+2•32+3•42=70;
(2)假设存在常数a,b,c使得f(n)=
(an2+bn+c)对一切自然数n都成立,n(n+1) 12
则f(1)=
(a+b+c)=4,1×2 12
∴a+b+c=24①,
同理,由f(2)=22得4a+2b+c=44②,
由f(3)=70得9a+3b+c=70③
联立①②③,解得a=3,b=11,c=10.
∴f(n)=
(3n2+11n+10).n(n+1) 12
证明:1°当n=1时,显然成立;
2°假设n=k时,f(k)=
(3k2+11k+10)=k(k+1) 12
,k(k+1)(k+2)(3k+5) 12
则n=k+1时,f(k+1)=f(k)+(k+1)[(k+1)+1]2
=
+(k+1)[(k+1)+1]2k(k+1)(k+2)(3k+5) 12
=
(3k2+17k+24)(k+1)(k+2) 12
=(k+1)(k+2)(k+3)(3k+8) 12
=
,(k+1)[(k+1)+1][(k+2)+1][3(k+1)+5] 12
即n=k+1时,结论也成立.
综合1°,2°知,存在常数a=3,b=11,c=10使得f(n)=
(3n2+11n+10)对一切自然数n都成立.n(n+1) 12