问题 解答题
当n∈N*时,Sn=1-
1
2
+
1
3
-
1
4
+…+
1
2n-1
-
1
2n
,Tn=
1
n+1
+
1
n+2
+
1
n+3
+…+
1
2n

(Ⅰ)求S1,S2,T1,T2
(Ⅱ)猜想Sn与Tn的关系,并用数学归纳法证明.
答案

(Ⅰ)∵当n∈N*时,Sn=1-

1
2
+
1
3
-
1
4
+…+
1
2n-1
-
1
2n
,Tn=
1
n+1
+
1
n+2
+
1
n+3
+…+
1
2n

∴S1=1-

1
2
=
1
2
,S2=1-
1
2
+
1
3
-
1
4
=
7
12
,T1=
1
1+1
=
1
2
,T2=
1
2+1
+
1
2+2
=
7
12
(2分)

(Ⅱ)猜想:Sn=Tn(n∈N*),即:

1-

1
2
+
1
3
-
1
4
+…+
1
2n-1
-
1
2n
=
1
n+1
+
1
n+2
+
1
n+3
+…+
1
2n

(n∈N*)(5分)

下面用数学归纳法证明:

①当n=1时,已证S1=T1(6分)

②假设n=k时,Sk=Tk(k≥1,k∈N*),

即:1-

1
2
+
1
3
-
1
4
+…+
1
2k-1
-
1
2k
=
1
k+1
+
1
k+2
+
1
k+3
+…+
1
2k
(8分)

则:Sk+1=Sk+

1
2k+1
-
1
2(k+1)
=Tk+
1
2k+1
-
1
2(k+1)
(10分)

=

1
k+1
+
1
k+2
+
1
k+3
+…+
1
2k
+
1
2k+1
-
1
2(k+1)
(11分)

=

1
k+2
+
1
k+3
+…+
1
2k
+
1
2k+1
+(
1
k+1
-
1
2(k+1)

=

1
(k+1)+1
+
1
(k+1)+2
+…+
1
2k+1
+
1
2(k+1)
=Tk+1

由①,②可知,对任意n∈N*,Sn=Tn都成立.(14分)

多项选择题
单项选择题