当n∈N*时,Sn=1-
(Ⅰ)求S1,S2,T1,T2; (Ⅱ)猜想Sn与Tn的关系,并用数学归纳法证明. |
(Ⅰ)∵当n∈N*时,Sn=1-
+1 2
-1 3
+…+1 4
-1 2n-1
,Tn=1 2n
+1 n+1
+1 n+2
+…+1 n+3
.1 2n
∴S1=1-
=1 2
,S2=1-1 2
+1 2
-1 3
=1 4
,T1=7 12
=1 1+1
,T2=1 2
+1 2+1
=1 2+2
(2分)7 12
(Ⅱ)猜想:Sn=Tn(n∈N*),即:
1-
+1 2
-1 3
+…+1 4
-1 2n-1
=1 2n
+1 n+1
+1 n+2
+…+1 n+3 1 2n
(n∈N*)(5分)
下面用数学归纳法证明:
①当n=1时,已证S1=T1(6分)
②假设n=k时,Sk=Tk(k≥1,k∈N*),
即:1-
+1 2
-1 3
+…+1 4
-1 2k-1
=1 2k
+1 k+1
+1 k+2
+…+1 k+3
(8分)1 2k
则:Sk+1=Sk+
-1 2k+1
=Tk+1 2(k+1)
-1 2k+1
(10分)1 2(k+1)
=
+1 k+1
+1 k+2
+…+1 k+3
+1 2k
-1 2k+1
(11分)1 2(k+1)
=
+1 k+2
+…+1 k+3
+1 2k
+(1 2k+1
-1 k+1
)1 2(k+1)
=
+1 (k+1)+1
+…+1 (k+1)+2
+1 2k+1
=Tk+1,1 2(k+1)
由①,②可知,对任意n∈N*,Sn=Tn都成立.(14分)