问题 解答题
已知数列{an}的前n项和为Sn,且Sn=3n2-2n.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
3
anan+1
,Tn是数列{bn}的前n项和,求Tn
答案

(Ⅰ)由已知得n=1,a1=s1=1,

 若n≥2,则an=sn-sn-1

=(3n2-2n)-[3(n-1)2-2(n-1)

=6n-5,

n=1时满足上式,所以an=6n-5.

   (Ⅱ)由(Ⅰ)得知bn=

3
anan+1
=
3
(6n-5)[6(n+1)-5]
=
1
2
(
1
6n-5
-
1
6n+1
)

        故Tn=b1+b2+…+bn=

1
2
[(1-
1
7
)+(
1
7
-
1
13
)+…+(
1
6n-5
-
1
6n+1
)]

=

1
2
(1- 
1
6n+1
)  =  
3n
6n+1

解答题
单项选择题