问题
解答题
已知数列{an}的前n项和为Sn,且Sn=3n2-2n. (Ⅰ)求数列{an}的通项公式; (Ⅱ)设bn=
|
答案
(Ⅰ)由已知得n=1,a1=s1=1,
若n≥2,则an=sn-sn-1
=(3n2-2n)-[3(n-1)2-2(n-1)
=6n-5,
n=1时满足上式,所以an=6n-5.
(Ⅱ)由(Ⅰ)得知bn=
=3 anan+1
=3 (6n-5)[6(n+1)-5]
(1 2
-1 6n-5
)1 6n+1
故Tn=b1+b2+…+bn=
[(1-1 2
)+(1 7
-1 7
)+…+(1 13
-1 6n-5
)]1 6n+1
=
(1- 1 2
) = 1 6n+1
.3n 6n+1