问题
填空题
数列{an}满足:an=1+2+…+n(n∈N*),则
|
答案
∵an=1+2+…+n=n(n+1) 2
∴
=1 an
=2(2 n(n+1)
-1 n
)1 n+1
∴
+1 a1
+…+1 a2
=2(1-1 an
+1 2
-1 2
+…+1 3
-1 n
)=2(1-1 n+1
)=1 n+1 2n n+1
故答案为:2n n+1
数列{an}满足:an=1+2+…+n(n∈N*),则
|
∵an=1+2+…+n=n(n+1) 2
∴
=1 an
=2(2 n(n+1)
-1 n
)1 n+1
∴
+1 a1
+…+1 a2
=2(1-1 an
+1 2
-1 2
+…+1 3
-1 n
)=2(1-1 n+1
)=1 n+1 2n n+1
故答案为:2n n+1