问题 填空题
数列{an}满足:an=1+2+…+n(n∈N*),则
1
a1
+
1
a2
+…+
1
an
=______.
答案

∵an=1+2+…+n=

n(n+1)
2

1
an
=
2
n(n+1)
=2(
1
n
-
1
n+1

1
a1
+
1
a2
+…+
1
an
=2(1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1
)=2(1-
1
n+1
)=
2n
n+1

故答案为:

2n
n+1

不定项选择
多项选择题