问题
解答题
已知数列{an}的前n项和为Sn=n2+n. (1)求数列{an}的通项公式; (2)若bn=2
|
答案
(1)当n≥2时,有an=Sn-Sn-1=n2+n-(n-1)2-(n-1)=2n,
而a1=S1=2适合上式,
所以an=2n.
(2)∵bn=2
+n,a n 2
∴bn=2n+n
∴数列{bn}的前n项和Tn=21+1+22+2+…+2n+n
=21+22+…+2n+1+2+…+n
=
+2(1-2n) 1-2 (1+n)n 2
=2n+1-2+(1+n)n 2