问题 问答题

如图所示为一皮带传送装置,皮带保持匀速率运动,货物由静止放到传送带上,被传送带向下传送,其运动的v-t图象如图乙所示.

解答下列问题(计算中取

2
=1.41,
3
=1.73):

(l)皮带的速度:

(2)皮带与水半面间的夹角θ及货物与皮带之间的动摩擦因数μ的大小.

(3)如果货物是用麻袋装载的石灰粉,当一件货物被运送后,发现这件货物在皮带上留有一段l=4.0m长的白色痕迹,请由此推断该件货物的传送时间和传送距离.

答案

(1)皮带的速度为6.0 m/s,方向沿斜面向下.

(2)由货物运动的v-t图象得:a1=

v1
t1
=6.0 m/s2,a2=
v2
t2
=4.0 m/s2

在0~1.0 s:皮带对物体的滑动摩擦力沿斜面向下,由牛顿第二定律得:mg•simθ+μmg•cosθ=ma1

在1.0 s~2.0 s:皮带对物体的滑动摩擦力沿斜面向上,由牛顿第二定律得:mg•sinθ-μmg•cosθ=ma2

联立得:θ=30°,μ=

3
15
=0.115.

(3)由v-t图象知货物在1.0时间内加速到与皮带相同的速度6.0 m/s,皮带发生的位移s=v1t=6.0 m,货物发生的位移s=

v1
2
•t=3.0 m,此时间内皮带上痕迹的长度:△s=s-s=3.0 m<l=4.0 m.

此后货物速度超过皮带速度,物体向底端运动过程中发生的距离比皮带多4.0 m(其中有3.0 m为痕迹重叠区域).设从1.0秒末开始,货物的传送到底端的时间为t1、货物到底端的距离为S,则:

对皮带S-4=v1t1,对货物S=v1t1+

1
2
a2
t21
,联立以上两式得:t1=
2
s=1.41 s,l=(6
2
+4)m=12.46 m,

故每件货物的传送时间:T=t1+t=(1+

2
)s=2.41 s,传送距离:L=s+S=15.46 m.

答:(l)皮带的速度为6.0m/s;

(2)皮带与水半面间的夹角θ为30度,货物与皮带之间的动摩擦因数μ的大小为0.115;

(3)该件货物的传送时间为2.41s,传送距离为15.46m.

单项选择题
多项选择题