问题 解答题
设等差数列{an}的前n项和为Sn,且S4=4S2,a2n=2an+1.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{bn}满足
b1
a1
+
b2
a2
+…+
bn
an
=1-
1
2n
,n∈N*,求{bn}的前n项和Tn
答案

(Ⅰ)设等差数列{an}的首项为a1,公差为d,由S4=4S2,a2n=2an+1得:

4a1+6d=8a1+4d
a1+(2n-1)d=2a1+2(n-1)d+1

解得a1=1,d=2.

∴an=2n-1,n∈N*

(Ⅱ)由已知

b1
a1
+
b2
a2
+…+
bn
an
=1-
1
2n
,n∈N*,得:

当n=1时,

b1
a1
=
1
2

当n≥2时,

bn
an
=(1-
1
2n
)-(1-
1
2n-1
)=
1
2n
,显然,n=1时符合.

bn
an
=
1
2n
,n∈N*

由(Ⅰ)知,an=2n-1,n∈N*

∴bn=

2n-1
2n
,n∈N*

又Tn=

1
2
+
3
22
+
5
23
+…+
2n-1
2n

1
2
Tn=
1
22
+
3
23
+…+
2n-3
2n
+
2n-1
2n+1

两式相减得:

1
2
Tn=
1
2
+(
2
22
+
2
23
+…+
2
2n
)-
2n-1
2n+1

=

3
2
-
1
2n-1
-
2n-1
2n+1

∴Tn=3-

2n+3
2n

多项选择题
填空题