问题
解答题
设等差数列{an}的前n项和为Sn,且S4=4S2,a2n=2an+1. (Ⅰ)求数列{an}的通项公式; (Ⅱ)设数列{bn}满足
|
答案
(Ⅰ)设等差数列{an}的首项为a1,公差为d,由S4=4S2,a2n=2an+1得:
,4a1+6d=8a1+4d a1+(2n-1)d=2a1+2(n-1)d+1
解得a1=1,d=2.
∴an=2n-1,n∈N*.
(Ⅱ)由已知
+b1 a1
+…+b2 a2
=1-bn an
,n∈N*,得:1 2n
当n=1时,
=b1 a1
,1 2
当n≥2时,
=(1-bn an
)-(1-1 2n
)=1 2n-1
,显然,n=1时符合.1 2n
∴
=bn an
,n∈N*1 2n
由(Ⅰ)知,an=2n-1,n∈N*.
∴bn=
,n∈N*.2n-1 2n
又Tn=
+1 2
+3 22
+…+5 23
,2n-1 2n
∴
Tn=1 2
+1 22
+…+3 23
+2n-3 2n
,2n-1 2n+1
两式相减得:
Tn=1 2
+(1 2
+2 22
+…+2 23
)-2 2n 2n-1 2n+1
=
-3 2
-1 2n-1 2n-1 2n+1
∴Tn=3-
.2n+3 2n