问题 解答题
(文)设数列{an}的前n项和Sn=
n
n+1
,n=1,2,3…(1)求数列{an}的通项公式an.(2)求数列{
1
an
}的前n项和Tn
答案

(文) (1)∵数列{ an}的前n项和Sn=

n
n+1
 知a1=S1=
1
2
又由an=Sn-Sn-1(n≥2)

可知:an=

n
n+1
-
n-1
n
=
n2-(n2-1)
n(n+1)
=
1
n(n+1)
 (n≥2)又a1=
1
2
满足an=
1
n(n+1)
 (n≥2)

故数列{ an}的通项公式an=

1
n(n+1)
 (n∈N*)

(2)∵an=

1
n(n+1)
,则
1
an
=n(n+1)=n2+n 于是{
1
an
}的前n项之和Tn=
1
a1
+
1
a2
+…+
1
an

=(1+2+3+…+n)+(12+22+32+…+n2

=

n(n+1)
2
+
n(n+1)(2n+1)
6
=
n(n+1)(n+2)
3

数列{

1
an
}的前n项和Tn
n(n+1)(n+2)
3

选择题
单项选择题 A1型题