问题
解答题
(文)设数列{an}的前n项和Sn=
|
答案
(文) (1)∵数列{ an}的前n项和Sn=
知a1=S1=n n+1
又由an=Sn-Sn-1(n≥2)1 2
可知:an=
-n n+1
=n-1 n
=n2-(n2-1) n(n+1)
(n≥2)又a1=1 n(n+1)
满足an=1 2
(n≥2)1 n(n+1)
故数列{ an}的通项公式an=
(n∈N*)1 n(n+1)
(2)∵an=
,则1 n(n+1)
=n(n+1)=n2+n 于是{1 an
}的前n项之和Tn=1 an
+1 a1
+…+1 a2 1 an
=(1+2+3+…+n)+(12+22+32+…+n2)
=
+n(n+1) 2
=n(n+1)(2n+1) 6
.n(n+1)(n+2) 3
数列{
}的前n项和Tn:1 an
.n(n+1)(n+2) 3