问题
填空题
关于函数f(x)=2x-
|
答案
因为y=2x在R上是增函数,且y=2-x在R上是减函数,所以f(x)=2x-2-x在R上是增函数,所以②对,
f(x)=2x-2-x在R上是增函数当x→-∞则y→-∞,当x→+∞则y→+∞,则f(x)的值域为R,所以①对
因为f(x)=2x-2-x,故f(-x)=2-x-2x=-f(x),则f(x)为奇函数,f(x)的图象是中心对称图形,所以③对,
故答案为:①②③.
关于函数f(x)=2x-
|
因为y=2x在R上是增函数,且y=2-x在R上是减函数,所以f(x)=2x-2-x在R上是增函数,所以②对,
f(x)=2x-2-x在R上是增函数当x→-∞则y→-∞,当x→+∞则y→+∞,则f(x)的值域为R,所以①对
因为f(x)=2x-2-x,故f(-x)=2-x-2x=-f(x),则f(x)为奇函数,f(x)的图象是中心对称图形,所以③对,
故答案为:①②③.