设等差数列{an}的公差为2,前n项和为Sn,则下列结论中正确的是( )
A.Sn=nan-3n(n-1)
B.Sn=nan+3n(n-1)
C.Sn=nan-n(n-1)
D.Sn=nan+n(n-1)
可理解为首项是an,公差为-2的等差数{an},sn=nan+
×d=nan-n(n-1)n(n+1) 2
故选C
设等差数列{an}的公差为2,前n项和为Sn,则下列结论中正确的是( )
A.Sn=nan-3n(n-1)
B.Sn=nan+3n(n-1)
C.Sn=nan-n(n-1)
D.Sn=nan+n(n-1)
可理解为首项是an,公差为-2的等差数{an},sn=nan+
×d=nan-n(n-1)n(n+1) 2
故选C