问题 解答题

有四张卡片(背面完全相同),分别写有数字1、2、﹣1、﹣2,把它们背面朝上洗匀后,甲同学抽取一张记下这个数字后放回洗匀,乙同学再从中抽出一张,记下这个数字,用字母b、c分别表示甲、乙两同学抽出的数字.

(1)用列表法求关于x的方程x2+bx+c=0有实数解的概率;

(2)求(1)中方程有两个相等实数解的概率.

答案

:解:(1)列表得:

(1,﹣2)(2,﹣2)(﹣1,﹣2)(﹣2,﹣2)
(1,﹣1)(2,﹣1)(﹣1,﹣1)(﹣2,﹣1)
(1,2)(2,2)(﹣1,2)(﹣2,2)
(1,1)(2,1)(﹣1,1)(﹣2,1)
∴一共有16种等可能的结果,

∵关于x的方程x2+bx+c=0有实数解,即 b2﹣4c≥0,

∴关于x的方程x2+bx+c=0有实数解的有(1,﹣1),(1,﹣2),(2,1),(2,﹣1),(2,﹣2),(﹣1,﹣1),(﹣1,﹣2),(﹣2,1),(﹣2,﹣1),(﹣2,﹣2)共10种情况,

∴关于x的方程x2+bx+c=0有实数解的概率为:=

(2)(1)中方程有两个相等实数解的有(﹣2,1),(2,1),

∴(1)中方程有两个相等实数解的概率为:=

:(1)根据题意列表,然后根据表格求得所有等可能的结果与关于x的方程x2+bx+c=0有实数解的情况数,根据即可概率公式求解;

(2)首先求得(1)中方程有两个相等实数解的情况,然后即可根据概率公式求解.

单项选择题 A2型题
单项选择题