问题
解答题
等差数列{an}的前n项和为Sn,且a3=5,S15=225.
(1)数列{bn}满足:bn+1-bn=an(n∈N*),b 1=1,求数列{bn}的通项公式;
(2)设cn=2an+2n,求数列{cn}的前n项和Tn.
答案
(1)设等差数列{an}的公差为d,由已知得:
,a1+2d=5 15a1+
d=22515×14 2
解得:a1=1,d=2
∴an=2n-1,
又bn=b1+(b2-b1)+(b3-b2)+…+(bn-bn-1)=1+a1+a2+…+an-1=1+
=n2-2n+2.(n-1)(2n-2) 2
(2)cn=2an+2n=22n-1+2n=
•4n+2n1 2
∴Tn=c1+c2+…+cn=
(4+42+…+4n)+2(1+2+…+n)=1 2
(4n-1)+n2+n.2 3