问题 解答题

等差数列{an}的前n项和为Sn,且a3=5,S15=225.

(1)数列{bn}满足:bn+1-bn=an(n∈N*),b 1=1,求数列{bn}的通项公式;

(2)设cn=2an+2n,求数列{cn}的前n项和Tn

答案

(1)设等差数列{an}的公差为d,由已知得:

a1+2d=5
15a1+
15×14
2
d=225

解得:a1=1,d=2

∴an=2n-1,

又bn=b1+(b2-b1)+(b3-b2)+…+(bn-bn-1)=1+a1+a2+…+an-1=1+

(n-1)(2n-2)
2
=n2-2n+2.

(2)cn=2an+2n=22n-1+2n=

1
2
4n+2n

Tn=c1+c2+…+cn=

1
2
(4+42+…+4n)+2(1+2+…+n)=
2
3
(4n-1)+n2+n

填空题
单项选择题