问题
问答题
斜面固定在水平地面上,倾角θ=53°,斜面足够长,物体与斜面间的动摩擦因数μ=0.8,如图所示.一物体以v0=6.4m/s的初速度从斜面底端向上滑行,sin53°=0.8,cos53°=0.6,g取10m/s2,求
(1)物体上滑的最大距离
(2)物体返回斜面底端的时间
(3)物体运动到最大高度一半时的速度.
答案
(1)物体上滑过程,根据动能定理得
-(mgxsinθ+μmgcosθ)x=0-
m1 2 v 20
解得,x=1.6m
(2)根据牛顿第二定律得,物体下滑过程的加速度大小为a=
=g(sinθ-μcosθ)mgsinθ-μmgcosθ m
代入解得,a=3.2m/s2.
由x=
at2得,t=1 2
=1s2x a
(3)设上滑和下滑到最大高度一半时物体的速度大小分别为v1和v2,则
上滑:-(mgxsinθ+μmgcosθ)
x=1 2
m1 2
-v 21
m1 2 v 20
下滑:(mgxsinθ-μmgcosθ)
x=1 2
m1 2 v 22
解得,v1=3.2
m/s,v2=1.62
m/s.2
答:
(1)物体上滑的最大距离是1.6m.
(2)物体返回斜面底端的时间是1s.
(3)物体上滑到最大高度一半时的速度为3.2
m/s,下滑到最大高度一半时的速度为1.62
m/s.2