问题
解答题
设正项数列{an}的前n项和为Sn,对于任意的n∈N*,点(an,Sn)都在函数f(x)=
(Ⅰ)求数列{an}的通项公式; (Ⅱ)设bn=
|
答案
(Ⅰ)∵Sn=
an2+1 4
an,①1 2
∴Sn+1=
an+12+1 4
an+1,②1 2
②-①得:an+1=
(an+12-an2)+1 4
(an+1-an),1 2
∴
(an+12-an2)=1 4
(an+1+an),1 2
∵an>0,
∴an+1-an=2.
又a1=
a12+1 4
a1,1 2
∴a1=2,
∴正项数列{an}是以2为首项,2为公差的等差数列,
∴an=2+(n-1)×2=2n.
(Ⅱ)∵an=2n,
∴bn=
=1 an•an+1
=1 2n(2n+2)
(1 4
-1 n
),1 n+1
∴Tn=b1+b2+…+bn
=
[(1-1 4
)+(1 2
-1 2
)+…+(1 3
-1 n
)]1 n+1
=
(1-1 4
)1 n+1
=
.n 4(n+1)