问题 解答题
设{an}是等差数列,其前n项和为Sn,已知S7=63,a4+a5+a6=33,
(1)写出数列{an}的通项公式;
(2) 求数列bn=2an+n,求数列{bn}的前n项和Tn;
(3) 求证:
1
S1
+
1
S2
+
1
S3
+…+
1
Sn
3
4
答案

(1)∵s7=

(a1+a7)
2
×7=7a4=63

∴a4=9,又a4+a5+a6=33,3a5=33,则a5=11

 公差d=2,an=2n+1;

(2)∵bn=2an+n=22n+1+n

∴Tn=b1+b2+…+bn=(23+1)+(25+2)+••+(22n+1+n)

=(23+25+…+22n+1)+(1+2+…+n)

=

8(4n-1)
3
+
n(n+1)
2

 (3)由等差数列的前n项和公式可得,Sn=3n+

n(n-1)
2
×2=n2+2n=n(n+2)

1
Sn
=
1
n(n+2)
=
1
2
(
1
n
-
1
n+2
)

1
S1
+
1
S2
 +…+
1
Sn
=
1
2
(1-
1
3
+
1
2
-
1
4
+…+
1
n
-
1
n+2
)

=

1
2
(1+
1
2
-
1
1+n
-
1
n+2
 )=
3
4
-
2n+3
2(n+1)(n+2)
3
4

多项选择题
填空题