问题
解答题
设{an}是等差数列,其前n项和为Sn,已知S7=63,a4+a5+a6=33, (1)写出数列{an}的通项公式; (2) 求数列bn=2an+n,求数列{bn}的前n项和Tn; (3) 求证:
|
答案
(1)∵s7=
×7=7a4=63(a1+a7) 2
∴a4=9,又a4+a5+a6=33,3a5=33,则a5=11
公差d=2,an=2n+1;
(2)∵bn=2an+n=22n+1+n
∴Tn=b1+b2+…+bn=(23+1)+(25+2)+••+(22n+1+n)
=(23+25+…+22n+1)+(1+2+…+n)
=
+8(4n-1) 3 n(n+1) 2
(3)由等差数列的前n项和公式可得,Sn=3n+
×2=n2+2n=n(n+2)n(n-1) 2
∴
=1 Sn
=1 n(n+2)
(1 2
-1 n
)1 n+2
∴
+1 S1
+…+1 S2
=1 Sn
(1-1 2
+1 3
-1 2
+…+1 4
-1 n
)1 n+2
=
(1+1 2
-1 2
-1 1+n
)=1 n+2
-3 4
<2n+3 2(n+1)(n+2) 3 4