问题
解答题
等差数列{an} 的前n项的和为Sn,且S5=45,S6=60. (1)求{an} 的通项公式; (2)若数列{bn} 满足bn-bn=an-1(n∉N*),且b1=3,设数列{
|
答案
(1)a6=S6-S5=15,由S6=
=60,(a1+a6)×6 2
解得a1=5,又∵d=
=2,a6-a1 6-1
所以an=2n+3.…4
(2)证明:∵b2-b1=a1,
b3-b2=a2,
b4-b3=a3,
…
bn-bn-1=an-1,
叠加得bn-b1=
=(a1+an-1)(n-1) 2
,(5+2n+1)(n-1) 2
所以bn=n2+2n.…(9分)
∴
=1 bn
=1 n2+2n
[1 2
-1 n
],1 n+2
∴Tn=
(1-1 2
+1 3
-1 2
+1 4
-1 3
+…+1 5
-1 n
)1 n+2
=
(1 2
-3 2
-1 n+1
)1 n+2
=
-3 4
(1 2
+1 n+1
)<1 n+2
.…(12分)3 4