问题 解答题
等差数列{an} 的前n项的和为Sn,且S5=45,S6=60.
(1)求{an} 的通项公式;
(2)若数列{bn} 满足bn-bn=an-1(n∉N*),且b1=3,设数列{
1
bn
}
的前n项和为Tn.求证:Tn
3
4
答案

(1)a6=S6-S5=15,由S6=

(a1+a6)×6
2
=60,

解得a1=5,又∵d=

a6-a1
6-1
=2,

所以an=2n+3.…4

(2)证明:∵b2-b1=a1

b3-b2=a2

b4-b3=a3

bn-bn-1=an-1

叠加得bn-b1=

(a1+an-1)(n-1)
2
=
(5+2n+1)(n-1)
2

所以bn=n2+2n.…(9分)

1
bn
=
1
n2+2n
=
1
2
[
1
n
-
1
n+2
],

Tn=

1
2
(1-
1
3
+
1
2
-
1
4
+
1
3
-
1
5
+…+
1
n
-
1
n+2
)

=

1
2
(
3
2
-
1
n+1
-
1
n+2
)

=

3
4
-
1
2
(
1
n+1
+
1
n+2
)<
3
4
.…(12分)

多项选择题
单项选择题