问题
填空题
设an是fn(x)=(1+x)n+1(n∈N*)的展开式中xn项的系数,则an=______;数列{an}的前n项和为______.
答案
∵an是fn(x)=(1+x)n+1(n∈N*)的展开式中xn项的系数
∴an=Cn+1n=n+1
∴数列{an}的前n项和为2+3+4+…+n+1=
=(2+n+1)n 2 (n+3)n 2
故答案为an=Cnn+1;(n+3)n 2
设an是fn(x)=(1+x)n+1(n∈N*)的展开式中xn项的系数,则an=______;数列{an}的前n项和为______.
∵an是fn(x)=(1+x)n+1(n∈N*)的展开式中xn项的系数
∴an=Cn+1n=n+1
∴数列{an}的前n项和为2+3+4+…+n+1=
=(2+n+1)n 2 (n+3)n 2
故答案为an=Cnn+1;(n+3)n 2