问题
解答题
求证:若圆内接五边形的每个角都相等,则它为正五边形.
答案
证明:设圆内接五边形为ABCDE,圆心是 O.
连接OA,OB,OC OD,OE,可得五个三角形
∵OA=OB=OC=OD=OE=半径,∴有五个等腰三角形
在△OAB、△OBC、△OCD、△ODE、△OEA中
则∠OAB=∠OBA,∠OBC=∠OCB,∠OCD=∠ODC,∠ODE=∠OED,∠OEA=∠OAE
因为所有内角相等,
所以∠OAE+∠OAB=∠OBA+∠OBC,所以∠OAE=∠OBC
同理证明∠OBA=∠OCD,∠OCB=∠OED,∠ODC=∠OEA,∠OED=∠OAB
则△OAB、△OBC、△OCD、△ODE、△OEA 中,∠AOB=∠BOC=∠COD=∠DOE=∠EOA
∴△OAB≌△OBC≌△OCD≌△ODE≌△OEA (SAS边角边定律)
∴AB=BC=CD=DE=EA
∴五边形ABCDE为正五边形