问题 选择题
已知数列{an}为
1
2
1
3
+
2
3
1
4
+
2
4
+
3
4
1
5
+
2
5
+
3
5
+
4
5
,….若bn=
1
an•an+2
,则{bn}的前几项和Sn=(  )
A.
3n2+5n
(n+1)(n+2)
B.
2n2+5n
(n+1)(n+3)
C.
3n2+2n
(n+2)(n+3)
D.
2n2+3n
(n+1)(n+2)
答案

an=

1+2+…+n
n+1
=
n(n+1)
2
n+1
=
n
2

bn=

1
n
2
n+2
2
=2(
1
n
-
1
n+2
)

∴Sn=2[(1-

1
3
)+(
1
2
-
1
4
)+(
1
3
-
1
5
)+…+(
1
n-1
-
1
n+1
)+(
1
n
-
1
n+2
)]

=2(1+

1
2
-
1
n+1
-
1
n+2
)

=

3n2+5n
(n+1)(n+2)

故选A.

单项选择题
单项选择题