问题
解答题
已知等比数列{an},且a1=2,a2=4.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{bn}为等差数列,且b1=a1,b3=a2,求数列{bn}的前n项和.
答案
(Ⅰ)设等比数列{an},的公比为q,
∴q=
=2a2 a1
∴an=a1qn-1=2×2n-1=2n
∴数列{an}的通项公式是an=2n
(Ⅱ)由己知得,b1=2,b3=4,设等差数列{bn}的公差为d,
∴d=
=1b3-b1 3-1
∴数列{bn}的前n项和Sn=b1n+
=2n+n(n+1)d 2
=n(n+1)•1 2 n2+3n 2