问题
问答题
设曲线L位于xOy平面的第一象限内,L上任意一点M处的切线与y轴总相交,交点为A,已知|MA|=|OA|,且L经过点(1,1),求L的方程。
答案
参考答案:
设点M的坐标为(x,y),则切线MA:Y-y=y’(X=x),令X=0,则Y=y-y’x,故点A的坐标为(0,y-y’x).
由 |MA|=|OA|,得即这是一阶线性非齐次方程,得解,因为曲线经过点(1,1),所以C=2.
再由曲线在第一象限内,得曲线方程为。