问题 解答题
已知数列{an}的首项a1=2,an+1=2an+2n+1,(n∈N*,n≥1)
(Ⅰ)证明:数列{
an
2n
}为等差数列;
(Ⅱ)设数列{an}的前n项和为Sn,求Sn
答案

(Ⅰ)∵

an+1
2n+1
-
an
2n
=
an+1-2an
2n+1
=
2n+1
2n+1
=1(n≥1)

∴数列{

an
2n
}为等差数列

(Ⅱ)∵

a1
2
=1,∴
an
2n
=1+(n-1)=n
,∴an=n•2n

所以sn=2+2×22+3×23+…+n2n…①,

两边都乘以2得:2sn=22+2×23+3×24+…+(n-1)2n+n2n+1…

①-②得:-sn=2+22+23+…+2n-n2n+1=

2(1-2n)
1-2
-n2n+1

解得Sn=(n-1)•2n+1+2.

选择题
单项选择题