问题
解答题
已知数列{an}的首项a1=2,an+1=2an+2n+1,(n∈N*,n≥1) (Ⅰ)证明:数列{
(Ⅱ)设数列{an}的前n项和为Sn,求Sn. |
答案
(Ⅰ)∵
-an+1 2n+1
=an 2n
=an+1-2an 2n+1
=1(n≥1)2n+1 2n+1
∴数列{
}为等差数列an 2n
(Ⅱ)∵
=1,∴a1 2
=1+(n-1)=n,∴an=n•2nan 2n
所以sn=2+2×22+3×23+…+n2n…①,
两边都乘以2得:2sn=22+2×23+3×24+…+(n-1)2n+n2n+1…②
①-②得:-sn=2+22+23+…+2n-n2n+1=
-n2n+1,2(1-2n) 1-2
解得Sn=(n-1)•2n+1+2.