设数列{an}中,an=1+2+3+…+n(n∈N*),将{an}中5的倍数的项依次记为b1,b2,b3,…,
(I)求b1,b2,b3,b4的值.
(II)用k表示b2k-1与b2k,并说明理由.
(III)求和:b1+b2+b3+…+b2n-1+b2n.
(I)∵an=1+2+3+…+n=n(n+1) 2
由题意可得,b1=a4=10,b2=a5=15,b3=a9=45,b4=a10=55;
(II)∵an=
=5m(m∈N+),n(n+1) 2
∴n=5k或n+1=5k(k∈N+),
即n=5k-1或n=5k
∵b2k-1<b2k,
∴b2k-1=a5k-1=
,b2k=a5k=5k(5k-1) 2 5k(5k+1) 2
(III)由(II)可得,b2n-1+b2n=
=25n25n(5n-1)+5n(5n+1) 2
∴b1+b2+…+b2n=(b1+b2)+(b3+b4)+…+(b2n-1+b2n)
=25×12+25×22+…+25n2
=25(12+22+…+n2)
∴b1+b2+…+b2n=
n(n+1)(2n+1).25 6