问题 选择题

    函数y=2|x|的值域是(    )

A.(0,1]

B.[1,+∞)

C.(0,1)

D.(0,+∞)

答案

答案:B

解法一:y=2|x|=作出图象,观察得函数的值域为[1,+∞).

解法二:令u=|x|≥0,则y=2u≥20=1.

绿色通道 本题是一道函数综合题,需利用函数的有关性质,如求函数的定义域、值域,判断函数的奇偶性、单调性等知识.在判断函数的单调性时,我们也可以采用复合函数单调性的判断方法.当x>0时,∵2x为增函数,

∴2x-1为增函数,为递减函数,-为增函数.

∴y=--在(0,+∞)上递增.一般地,函数y=f(u)和函数u=g(x),设函数y=f[g(x)]的定义域为集合A,如果在A或A的某个子区间上函数y=f(u)(称外层函数)与u=g(x)(称内层函数)单调性相同,则复合函数y=f[g(x)]在该区间上递增;如单调性相反,则复合函数y=f[g(x)]在该区间上递减(可以简记为“同增异减”).另外,记住以下结论对判断复合函数单调性很有帮助:①若函数y=f(x)递增(减),则y=-f(x)递减(增);②若函数y=f(x)在某个区间上恒为正(负)且递增(减),则y=递减(增);③若函数y=f(x)递增(减),则y=f(x)+k递增(减).

判断题
单项选择题