问题
解答题
已知雅美服装厂现有A种布料70米,B种布料52米,现计划用这两种布料生产M、N两种型号的时装共80套。已知做一套M型号的时装需用A种布料1.1米,B种布料0.4米,可获利50元;做一套N型号的时装需用A种布料0.6米,B种布料0.9米,可获利45元。设生产M型号的时装套数为x,用这批布料生产两种型号的时装所获得的总利润为y元。
①求y(元)与x(套)的函数关系式,并求出自变量的取值范围;
②当M型号的时装为多少套时,能使该厂所获利润最大?最大利润是多?
答案
解:①y=50x+45(80-x)=5x+3600。
∵两种型号的时装共用A种布料[1.1x+0.6(80-x)]米,
共用B种布料[0.4x+0.9(80-x)]米,
∴ 解之得40≤x≤44,
而x为整数,
∴x=40,41,42,43,44,
∴y与x的函数关系式是y=5x+3600(x=40,41,42,43,44);
②∵y随x的增大而增大,
∴当x=44时,y最大=3820,
即生产M型号的时装44套时,该厂所获利润最大,最大利润是3820元。