问题
解答题
已知Sn为等差数列{an}的前n项和,且a3=5,S3=9. (Ⅰ)求{an}的通项公式; (Ⅱ)求数列{
|
答案
(Ⅰ)设等差数列{an}的公差为d,
则
,解得a3=a1+2d=5 S3=3a1+
d3×2 2
,a1=1 d=2
∴{an}的通项公式为:an=1+2(n-1)=2n-1
(Ⅱ)由(1)可知an=2n-1,
∴
=1 anan+1
=1 (2n-1)(2n+1)
[1 2
-1 2n-1
],1 2n+1
∴Tn=
(1-1 2
+1 3
-1 3
+1 5
-1 5
+…+1 7
-1 2n-1
)1 2n+1
=
(1-1 2
)=1 2n+1
.n 2n+1