问题
解答题
(1)把参数方程(t为参数)
(2)当0≤t<
|
答案
(1)利用公式sec2t=1+tg2t,得x2=1+
.y2 4
∴曲线的直角坐标普通方程为x2-
=1.y2 4
(2)当0≤t≤
时,x≥1,y≥0,得到的是曲线在第一象限的部分(包括(1,0)点);π 2
当0≤t≤
时,x≤-1,y≥0,得到的是曲线在第二象限的部分,(包括(-1,0)点).3π 2
(1)把参数方程(t为参数)
(2)当0≤t<
|
(1)利用公式sec2t=1+tg2t,得x2=1+
.y2 4
∴曲线的直角坐标普通方程为x2-
=1.y2 4
(2)当0≤t≤
时,x≥1,y≥0,得到的是曲线在第一象限的部分(包括(1,0)点);π 2
当0≤t≤
时,x≤-1,y≥0,得到的是曲线在第二象限的部分,(包括(-1,0)点).3π 2