问题
解答题
某县决定鼓励农民开荒种植牡丹并实行政府补贴,规定每新种植一亩牡丹一次性补贴农户若干元经调查,种植亩数y(亩)与补贴数额x(元)之间成一次函数关系,且补贴与种植情况如下表: | ||||||||
(1)分别求出政府补贴政策实施后,种植亩数y(亩)、每亩牡丹的收益z(元)与政府补贴数额x(元)之间的函数关系式; (2)要使全县新种植的牡丹总收益W(元)最大,又要从政府的角度出发,政府应将每亩补贴数额x定为多少元?并求出总收益W的最大值和此时种植亩数;(总收益=每亩收益×亩数) (3)在(2)问中取得最大总收益的情况下,需占用其中不超过50亩的新种牡丹园,利用其树间空地种植新品种“黑桃皇后”已知引进该新品种平均每亩的费用为530元,此外还要购置其它设备,这项费用(元)等于种植面积(亩)的平方的25倍这样混种了“黑桃皇后”的这部分土地比原来种植单一品种牡丹时每亩的平均收益增加了2000元,这部分混种土地在扣除所有费用后总收益为85000元,求混种牡丹的土地有多少亩? |
答案
解:(1)y=kx+b过(10,160)(20,240)
∴,解得,
∴y=8x+80
;
(2)W=y·z=(8x+80)(-3x+3000),
=24x2+23760x+240000,
=-24(x2-990x+4952-4952)+240000,
=-24(x-495)2+6120600,
∵x为10的整数倍,
∴当x=490或x=500时,W最大=6120000,
∵从政府角度出发,
∴当x=490时,W最大=6120000,
此时种植y=8×490+80=4000亩;
(3)此时平均每亩收益(元),
设混种牡丹的土地m亩,则(1530+2000)·m-530m-25m2=85000,
m2-120m+3400=0,
解得:m=60±10,
∴m1=60+10>50,
m2=60-10,
∴混种牡丹的土地有(60-10)亩。