已知数列{An}的前n项和为Sn,a1=1,满足下列条件 ①∀n∈N*,an≠0; ②点Pn(an,Sn)在函数f(x)=
(I)求数列{an}的通项an及前n项和Sn; (II)求证:0≤|Pn+1Pn+2|-|PnPn+1|<1. |
(I)由题意Sn=
,an2+an 2
当n≥2时an=Sn-Sn-1=
-an2+an 2
,an-12+an-1 2
整理,得(an+an-1)(an-an-1-1)=0,
又∀n∈N*,an≠0,所以an+an-1=0或an-an-1-1=0,
当an+an-1=0时,a1=1,
=-1,an an-1
得an=(-1)n-1,Sn=
;1-(-1)n 2
当an-an-1-1=0时,a1=1,an-an-1=1,
得an=n,Sn=
.n2+n 2
(II)证明:当an+an-1=0时,Pn((-1)n-1,
),1-(-1)n 2
|Pn+1Pn+2|=|PnPn+1|=
,所以|Pn+1Pn+2|-|PnPn+1|=0,5
当an-an-1-1=0时,Pn(n,
),n2+n 2
|Pn+1Pn+2|=
,|PnPn+1|=1+(n+2)2
,1+(n+1)2
|Pn+1Pn+2|-|PnPn+1|=
-1+(n+2)2 1+(n+1)2
=1+(n+2)2-1-(n+1)2
+1+(n+2)2 1+(n+1)2
=
,2n+3
+1+(n+2)2 1+(n+1)2
因为
>n+2,1+(n+2)2
>n+1,1+(n+1)2
所以0<
<1,2n+3
+1+(n+2)2 1+(n+1)2
综上0≤|Pn+1Pn+2|-|PnPn+1|<1.