问题 解答题
已知数列{An}的前n项和为Sn,a1=1,满足下列条件
①∀n∈N*,an≠0;
②点Pn(an,Sn)在函数f(x)=
x2+x
2
的图象上;
(I)求数列{an}的通项an及前n项和Sn
(II)求证:0≤|Pn+1Pn+2|-|PnPn+1|<1.
答案

(I)由题意Sn=

an2+an
2

当n≥2时an=Sn-Sn-1=

an2+an
2
-
an-12+an-1
2

整理,得(an+an-1)(an-an-1-1)=0,

又∀n∈N*,an≠0,所以an+an-1=0或an-an-1-1=0,

当an+an-1=0时,a1=1,

an
an-1
=-1,

an=(-1)n-1Sn=

1-(-1)n
2

当an-an-1-1=0时,a1=1,an-an-1=1,

得an=n,Sn=

n2+n
2

(II)证明:当an+an-1=0时,Pn((-1)n-1

1-(-1)n
2
),

|Pn+1Pn+2|=|PnPn+1|=

5
,所以|Pn+1Pn+2|-|PnPn+1|=0,

当an-an-1-1=0时,Pn(n,

n2+n
2
),

|Pn+1Pn+2|=

1+(n+2)2
,|PnPn+1|=
1+(n+1)2

|Pn+1Pn+2|-|PnPn+1|=

1+(n+2)2
-
1+(n+1)2

=

1+(n+2)2-1-(n+1)2
1+(n+2)2
+
1+(n+1)2

=

2n+3
1+(n+2)2
+
1+(n+1)2

因为

1+(n+2)2
>n+2,
1+(n+1)2
>n+1,

所以0<

2n+3
1+(n+2)2
+
1+(n+1)2
<1,

综上0≤|Pn+1Pn+2|-|PnPn+1|<1.

单项选择题
问答题