问题 问答题

求微分方程y"+4y’+4y=cos2x满足条件y(0)=y’(0)=0的特解.

答案

参考答案:先求方程对应的齐次方程的通解.
特征方程为λ2+4λ+4=0,特征根为λ12=-2,所以对应的齐次方程的通解为
Y=(C1+C2x)e-2x
再求原方程的一个特解.
设y*=acos2x+bsin2x是原方程的一个特解,代入原方程得:a=0,

,因此

是原方程的一个特解.
从而原方程的通解为


又因为y(0)=y’(0)=0,代入通解可得C1=0,

.所以满足初始条件的特解为

计算题
单项选择题