问题 解答题
已知一次函数y=f(x)的图象关于直线y=x对称的图象为C,且f(1)=0,若点A(n ,
an+1
an
)
(n∈N*)在C上,a1=1,当n≥2时,
an+1
an
-
an
an-1
=1

(1)求数列{an}的通项公式;
(2)设Sn=
a1
3!
+
a2
4!
+
a3
5!
+…+
an
(n+2)!
,求
lim
n→∞
Sn
答案

(1)依题意C过点(0,1),所以设C方程为y=kx+1.

因为点A(n , 

an+1
an
)(n∈N*)在C上,所以
an+1
an
=kn+1

代入

an+1
an
-
an
an-1
=1,得k=1,故
an+1
an
=n+1

an
an-1
=n,
an-1
an-2
=n-1
,…,
a2
a1
=2
,且a1=1,

各式相乘得an=n!.

(2)∵

an
(n+2)!
=
n!
(n+2)!
=
1
(n+1)(n+2)
=
1
n+1
-
1
n+2

Sn=

1
2
-
1
3
+
1
3
-
1
4
+…+
1
n+1
-
1
n+2
=
1
2
-
1
n+2

lim
n→∞
Sn=
1
2

判断题
单项选择题