问题
解答题
设数列{un}是公差不为零的等差数列,|u11|=|u51|,u20=22,设{un}的前n项和为Sn,{|un|}的前n项和为Tn. (1)求u31值; (2)求Tn的表达式; (3)求
|
答案
(1)∵|u11|=|u51|且d≠0
∴u11=-u51
由等差数列的性质可得,u11+u51=2u31=0
∴u31=0
(2)由(1)可得u1=-30d
∴u20=u1+19d=-11d=22
∴d=-2,u1=60,un=60+(n-1)×(-2)=-2n+62
∴Sn=60n+
×(-2)=-n2+61nn(n-1) 2
当n≤31,Tn=|u1|+…+|un|=u1+u2+…+un=Sn=-n2+61n
n≥32,Tn=|u1|+|u2|+…+|u31|+…+|un|
=u1+u2+…+u31-(u32+…+un)
=S31-(Sn-S31)=2S31-Sn=n2-61n+1860
(3)lim n→∞
=Tn Sn lim n→∞
=61n-n2 n2-61n+1860 lim n→∞
=-1
-161 n 1-
+61 n 1860 n2