问题
解答题
已知函数f(x)=log3
(1)求证:y1+y2为定值; (2)若Sn=f(
(3)在(2)的条件下,若an=
|
答案
(1)证明:由已知P是MN的中点,有x1+x2=1,
∴y1+y2=log3
+log3
x13 1-x1
=log3
x23 1-x2
=1…4分3x1x2 1-(x1+x2)+x1x2
(2)由(1)知当x1+x2=1时,y1+y2=f(x1)+f(x2)=1.
∵Sn=f(
)+f(1 n
)…+f(2 n
)①,Sn=f(n-1 n
)+…+f(n-1 n
)+f(2 n
)②1 n
①+②得Sn=
…8分n-1 2
∴lim n→∞
=4Sn-9Sn 4Sn+1+9Sn+1 lim n→∞
=-2n-1-3n-1 2n+3n
…12分1 3
(3)当n≥2时,an=
=1 4×
•n+1 2 n+2 2
-1 n+1
.1 n+2
又当n=1时,a1=
,所以an=1 6
-1 n+1
…14分1 n+2
故Tn=(
-1 2
)+(1 3
-1 3
)+…+(1 4
-1 n+1
)=1 n+2
…16分n 2(n+2)
∵Tn<m(Sn+1+1)对一切n∈N*都成立,即m>
=Tn Sn+1+1
恒成立n (n+2)2
又
=n (n+2)2
≤1 n+
+44 n
,所以m的取值范围是(1 8
,+∞)…18分.1 8