问题
解答题
已知{an}是正数组成的数列,其前n项和2Sn=an2+an(n∈N*),数列{bn}满足b1=
(I)求数列{an},{bn}的通项公式; (II)若cn=anbn(n∈N*),数列{cn}的前n项和Tn,求
|
答案
(I)a1 =S1=
(a12+a1),∴a1=1,1 2
n≥2时,an=Sn-Sn-1=
(an2+an)-1 2
(an-12+an-1),1 2
∴an2-an-12-an-an-1=0,
(an+an-1)(an-an-1-1)=0,
∴an-an-1=1.
∴数列{an}是首项为1,公差为1的等差数列,
∴an=n.
于是bn+1=bn+3n,∴bn+1-bn=3n,bn=b1+(b2-b1)+(b3-b2)+…+(bn-bn-1)
=
+3+32+…+3n-1=3 2
+3 2
=3-3n 1-3
.3n 2
(II)cn=
n•3n,1 2
∴Tn=
(1×3+2×32+…n×3n),3Tn=1 2
(1×32+2×33+…+n×3n+1),1 2
∴2Tn=
(n•3n+1-3-32-…-3n)=1 2
(n•3n+1-1 2
)=3-3n+1 1-3
,(2n-1)•3n=1+3 4
Tn =
,(2n-1)•3n+1+3 8
∴lim n→∞
=Tn cn lim n→∞ (2n-1)•3n+1+3 8 n•3n 2
=lim n→∞ (2n-1)•3n+1+3 4n•3n
=
(lim n→∞
-3 2
+3 4n
• 3 4n
)=1 3n
.3 2