问题 解答题
已知{an}是正数组成的数列,其前n项和2Sn=an2+an(n∈N*),数列{bn}满足b1=
3
2
bn+1=bn+3an(n∈N*)
(I)求数列{an},{bn}的通项公式;
(II)若cn=anbn(n∈N*),数列{cn}的前n项和Tn,求
lim
n→∞
Tn
cn
答案

(I)a1 =S1=

1
2
(a12+a1),∴a1=1,

n≥2时,an=Sn-Sn-1=

1
2
(an2+an)-
1
2
(an-12+an-1),

∴an2-an-12-an-an-1=0,

(an+an-1)(an-an-1-1)=0,

∴an-an-1=1.

∴数列{an}是首项为1,公差为1的等差数列,

∴an=n.

于是bn+1=bn+3n,∴bn+1-bn=3n,bn=b1+(b2-b1)+(b3-b2)+…+(bn-bn-1

=

3
2
+3+32+…+3n-1=
3
2
+
3-3n
1-3
=
3n
2

(II)cn=

1
2
n•3n

Tn=

1
2
(1×3+2×32+…n×3n),3Tn=
1
2
(1×32+2×33+…+n×3n+1)

2Tn=

1
2
(n•3n+1-3-32-…-3n)=
1
2
(n•3n+1-
3-3n+1
1-3
)
=
(2n-1)•3n=1+3
4

Tn =

(2n-1)•3n+1+3
8

lim
n→∞
Tn
cn
=
lim
n→∞
(2n-1)•3n+1+3
8
n•3n
2

=

lim
n→∞
(2n-1)•3n+1+3
4n•3n

=

lim
n→∞
(
3
2
-
3
4n
+
3
4n
• 
1
3n
)=
3
2

判断题
多项选择题 X型题