问题 填空题
在直角坐标系xOy中,曲线C1的参数方程为
x=2cosα
y=
3
sinα
(α为参数)在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,曲线C2的方程为p(cosθ-sinθ)+1=0,则C1与C2的交点个数为______.
答案

由曲线C2的方程为p(cosθ-sinθ)+1=0,∴x-y+1=0.即y=x+1;

将曲线C1的参数方程化为普通方程为

x2
4
+
y2
3
=1.

∴消去y整理得:7x2+8x-8=0.

△>0,∴此方程有两个不同的实根,

故C1与C2的交点个数为2.

故答案为2.

单项选择题
选择题