问题
填空题
已知Sn是公差为d≠0的等差数列{an}的前n项和,{bn}是公比为1-d的等比数列,若b1=a1,b2=a1a2,b3=a2a3,则
|
答案
由等比数列的定义可得
= b2 b1
= 1-d,即a2=b3 b2
=1-d,∴a1+d=1-d,a3 a1
∴a1=1-2d,a3=2d2-3d+1,∴2(1-d)=(1-2d )+(2d2-3d+1),∴d=
,a1=-2,3 2
∴an=-2+(n-1)
=3 2
n-3 2
,an2=7 2
,9n2-42n+49 4
Sn =na1 +
=n(n-1)d 2
,3n2-11n 4
∴lim n→∞
=Sn a n2 lim n→∞
=3n2-11n 9n2-42n+49 lim n→∞
=3- 11 n 9-
+42 n 49 n2
=3-0 9-0+0
,1 3
答案为
.1 3