问题 填空题
已知Sn是公差为d≠0的等差数列{an}的前n项和,{bn}是公比为1-d的等比数列,若b1=a1,b2=a1a2,b3=a2a3,则
lim
n→∞
Sn
a2n
=______.
答案

由等比数列的定义可得

b2
b1
b3
b2
=  1-d,即a2=
a3
a1
=1-d,∴a1+d=1-d,

∴a1=1-2d,a3=2d2-3d+1,∴2(1-d)=(1-2d )+(2d2-3d+1),∴d=

3
2
,a1=-2,

∴an=-2+(n-1)

3
2
=
3
2
n
-
7
2
,an2=
9n2-42n+49
4

Sn =na1 +

n(n-1)d
2
=
3n2-11n
4

lim
n→∞
Sn
an2
=
lim
n→∞
3n2-11n
9n2-42n+49
=
lim
n→∞
3-
11
n
9-
42
n
+
49
n2
=
3-0
9-0+0
=
1
3

答案为

1
3

多项选择题
选择题