问题
填空题
若数列{an}的通项公式是an=3-n+(-2)-n+1,则
|
答案
a1+a2+…+an=(3-1+1)+[3-2+(-2)-1]+[3-3+(-2)-2]+…+[3-n+(-2)-n+1
=(3-1+3-2+…+3-n)+…+[1+(-2)-1+(-2)-2+…+(-2)-n+1]
=
3-1(1-3-n) |
1-3-1 |
1•[1-(-
| ||
1-(-2)-1 |
1-
| ||
2 |
1-(-
| ||
|
所以
lim |
n→∞ |
lim |
n→∞ |
1-
| ||
2 |
1-(-
| ||
|
7 |
6 |
故答案为:
7 |
6 |