问题
解答题
(文)已知等差数列{an}的首项a1=0且公差d≠0,bn=2^an(n∈N*),Sn是数列{bn}的前n项和. (1)求Sn; (2)设Tn=
|
答案
(文)(1)an=(n-1)d,bn=2^an=2(n-1)d(4分)
Sn=b1+b2+b3+…+bn=20+2d+22d+…+2(n-1)d
由d≠0得2d≠1,∴Sn=
1-(2d)n |
1-2d |
(2)Tn=
Sn |
bn |
| ||
2(n-1)d |
1-2nd |
2(n-1)d-2nd |
∴
lim |
n→∞ |
lim |
n→∞ |
1- 2nd |
2nd-d-2nd |
lim |
n→∞ |
1-(2d)n |
(2d)n-1-(2d)n |
=
lim |
n→∞ |
| ||
|
2d |
2d-1 |