问题 解答题
(文)已知等差数列{an}的首项a1=0且公差d≠0,bn=2^an(n∈N*),Sn是数列{bn}的前n项和.
(1)求Sn
(2)设Tn=
Sn
bn
(n∈N*),当d>0时,求
lim
n→+∞
Tn
答案

(文)(1)an=(n-1)d,bn=2^an=2(n-1)d(4分)

Sn=b1+b2+b3+…+bn=20+2d+22d+…+2(n-1)d

由d≠0得2d≠1,∴Sn=

1-(2d)n
1-2d
.                            (8分)

(2)Tn=

Sn
bn
=
1-(2d)n
1-2d
2(n-1)d
=
1-2nd
2(n-1)d-2nd
,(10分)

lim
n→∞
Tn
lim
n→∞
1- 2nd
2nd-d-2nd
=
lim
n→∞
1-(2d)n
(2d)n-1-(2d)n

=

lim
n→∞
1
2dn
-1
1
2d
-1
=
2d
2d-1

选择题
单项选择题